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I N T R O D U C T I O N  

Severa l  methods  a r e  at p resen t  avai lable  for  m e a s u r i n g  the ve loc i ty  dis t r ibut ion function of molecules  
in gas  f lows.  T h e s e  a r e  the mechan ica l  se lec t ion  method [1], m e a s u r e m e n t s  using the Doppler  contour  of spec -  
t r a l  l ines exci ted by a beam of e lec t rons  [2], and m e a s u r e m e n t s  based  on the t i m e  taken fo r  the molecu les  to 
t r a v e l  an ass igned  dis tance  [3]. When using any of these  methods the p rob lem a r i s e s  of in te rpre t ing  the ex-  
pe r imen ta l  data, which involves finding a re la t ionship  between the r e su l t s  of the m e a s u r e m e n t s  and the in- 
ves t iga ted  ve loc i ty  dis t r ibut ion of the molecules  and is common fo r  all  the methods used, s ince in all  ve r s ions  
the r eco rded  signal  is an in tegra l  of the convolution of the d is t r ibut ion inves t iga ted  with a ce r t a in  appara tus  
function. In this  paper ,  using the example  of t ime -o f - f l i gh t  m e a s u r e m e n t s  in a m o l e c u l a r  beam,  we cons ider  
two methods of de te rmin ing  gasdynamic  p a r a m e t e r s  r e la ted  to the momen t s  of the dis t r ibut ion function: the 
method in which the dis t r ibut ion function is f i r s t  es tab l i shed  using s ta t i s t i ca l  regu la r iza t ion  and subsequent  
calculat ion of the momen t s  and the method of d i rec t  r econs t ruc t ion  of the momen t s .  In the f i r s t  case  the r e -  
lation between the gasdynamic  p a r a m e t e r s  and the momen t s  of the dis t r ibut ion function a r e  obtained for  a d i s -  
t r ibut ion of a r b i t r a r y  fo rm,  and in the second it is obtained sole ly  fo r  a Maxwell  d is t r ibut ion.  

1 .  M e t h o d  o f  M e a s u r e m e n t  

A block d i ag ram of the s y s t e m  used  fo r  t ime-o f - f l i gh t  m e a s u r e m e n t s  is shown in Fig.  1. A nar row packet 
of molecules  is s epa ra t ed  f r o m  a mo lecu l a r  beam f o r m e d  by the s k i m m e r  1, using a chopper  2. During the 
t ime  of flight a c r o s s  the base  L this  packet  b ecomes  b l u r r e d  in accordance  with the ve loc i ty  d is t r ibut ion func- 
t ion of the molecu les .  The signal  U(t) r eco rded  by the f l ight - type  ionization de tec tor  3 r e p r e s e n t s  the change 
with t ime  of the densi ty  of molecu les  in the pickup. To inc rease  the s igna l /no ise  ra t io  the t ime-o f - f l i gh t  curves  
a r e  s to red  and ave raged  in the e lec t ron ic  unit 4. The  signal U(t) is the convolution of the dis t r ibut ion function 
of the molecules  f(t) in t ime  space  with an appara tus  function [4] 

(t) = i' ] (~) A (t - -  T) d~ ~ ~ (t), (1.1) U 

where  ~ (t) is the m e a s u r e m e n t  noise which is not e l iminated comple te ly  by the s to rage  p roces s ,  and A(t) is 
the appara tus  function of the s y s t e m  which t akes  into account the chopper  function, the dynamic p rope r t i e s  of 
the  de tec tor ,  and the appara tus  function of the s to rage  device.  The t r a n s m i s s i o n  function of the chopper  [4] 
depends on the re la t ion  between the effect ive radius  of the molecu la r  beam,  the width of the chopper  slit ,  and 
its speed of rotat ion.  

Methods of p r o c e s s i n g  the r e su l t s  of t ime-o f - f l i gh t  exper iments  in o rde r  to de te rmine  the gasdynamic  
p a r a m e t e r s  of the dis t r ibut ion function have been desc r ibed  in a number  of pape r s :  in [3], and l a t e r  in [5], me th-  
ods a re  desc r ibed  based  on the assumpt ion  that  the t ime-o f - f l i gh t  curves  a re  d i s to r ted  to only a negligible ex-  
tent  by the appara tus  function of the chopper  and that t he r e  is no m e a s u r e m e n t  noise p resen t ;  in [6] a lgebra ic  
express ions  a r e  obtained between the moment s  of the r eco rded  t ime-o f - f l i gh t  signal,  the ve loc i ty  distr ibution 
function of the molecules ,  and the appara tus  function. Using a Maxwell  dis t r ibut ion function the gasdynamic  
p a r a m e t e r s  of the dis t r ibut ion w e r e  de te rmined .  However,  the s ta t i s t i ca l  c h a r a c t e r i s t i c s  of the r econs t ruc ted  
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pa rame te r s  were  not considered.  In [7], using the same assumptions as in [6], the effect of the t r ansmiss ion  
function of the chopper and the dynamic function of the detector  and its e lectronic circui t  on the t ime-of-f l ight  
signal was est imated,  and it was shown that in pract ical  experiments,  neglect of apparatus broadening leads to 
e r r o r s  when process ing  and analyzing the experimental  resul ts .  In none of these papers  were  the apparatus 
functions of all the sections taken into account s imultaneously nor was the signal recons t ruc ted  taking ~ (t) into 
account.  One of the main drawbacks of the above methods is also the need to assume a Maxwell distribution. 

In [8], using the Tikhonov method of regular izat ion,  the problem of recons t ruc t ing  the distr ibution func- 
t ion f rom measurements  using a mechanical  se lec tor  was solved. The stochast ic  nature of the physical  mea-  
surements  was not taken into account, and es t imates  were  not made of the e r r o r s  involved in recons t ruc t ing  
the distr ibution function. 

2 .  T h e  R e l a t i o n  b e t w e e n  t h e  M e a s u r e d  S i g n a l  

a n d  t h e  G a s d y n a m i c  P a r a m e t e r s  

The required function f(t) is proport ional  to the change in molecular  density n(t) as a function of the t ime 
of flight t: 

](t) = on(t), (2.1) 

where c is the apparatus constant.  The density n(t) is related to the veloci ty distribution function F(v) by the 
expression [5] 

n(t) = NoF(v)/t, (2.2) 

where N o is the number of par t ic les  in a single packet defined by the chopper.  Hence, the dependence of f(t)t on 
1 / t  normal ized to unity at the maximum is identical with the dependence of F(v) on v with a s imi lar  normal iza -  
tion. 

We will wri te  the veloci ty distr ibution function in a rb i t r a ry  fo rm taking into account the anisotropy in 
direct ions paral le l  and perpendicular  to the motion of the gas: 
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F(v, O ) =  qcJn(v, O)]• O)v ~, (2.3) 

where  | is the angle between the cur ren t  lines and the direct ion to the detector,  and cl and c 2 are  normal iza -  
tion constants .  For  a Maxwell distr ibution with direct ional  anisotropy Eq. (2.35 becomes 

F(v, | = m/2nkT • .(m/2akT , )'/, exp [-- m(v sin O)2/2kr • l exp [--m(v cos 0 ~ w)2/2kT n ]v ~, 

which is identical with the express ion for  F(v, O) given in [9]. Here k is Bol tzmann 's  constant, m is the mass  
of the molecule,  w is the hydrodynamic velocity,  and T II and T• are  the paral le l  and perpendicular  t empera -  

tu res  [10]. 

In the case  when the detector  is placed on the axis of the molecular  beam and the solid angle within which 
the detector  is seen f rom the sk immer  is small,  Eq. (2.3) can be represented  in the s impler  form 

f(v) = e~v2l I1 (v), (2.4) 

where % is a normal izat ion constant,  and fli(v) in the case of a Maxwell distribution has the form 

]II (v) --  epx [--m(v w) 2/2k1'11 I. 

Substituting Eqs.  (2.2) and (2.4) into Eq. (2.15, we obtain the relat ion between f(t) and F(v): 

t](t) = c~F(v) = caqv2]! (v), (2.5) 

where  c 4 is a constant.  

The information on the distr ibution function obtained f rom t ime-of- f l ight  measurements  can be conven- 
iently represented  in the fo rm of averaged pa rame te r s :  the hydrodynamic flow veloci ty w and the average 
the rmal  energy for  a direction paral lel  to  the flow E I[ (equal to 1/2kT [1 under equilibrium conditions). By defini- 
tion [11], the average velocity and the average the rmal  energy of the gas have the fo rms  

oe 

vF (v) dv 
/ \ _  wl{F(v)} {F o (2.6) 

F (v) dv 
0 

• (v-- w)2 F (~:) dv 
m m O (2.7) . , ,  ~, ._,{F(~)} m [ m { ~ ( ~ ) ~ ' ] ~ = ~ - ~ = ' { F ( v ) }  = 2 ~ ' 

0 

where p 0, # 1, ~ 2 are  the zero,  f i rs t ,  and second unnormalized,  and ~ and v 2 a re  the f i r s t  and second  normal -  
ized, central  moments  of the a rb i t r a ry  distr ibution F(v). For  a Maxwell distribution function, as a resul t  of 
integrating Eqs.  (2.6} and (2.7) we obtain 

@~> = w I + 2 2S 2 + 1 + �9 (s) + (.~)-V~S-ie-~ ; (2.8) 

/\E,> = -~mr2 it  + t t } 
I S~ + -2- + (a)-l/2S e-s~ [t + �9 (S)1-1 , '  (2.9) 

where  ~/= ~ is the most  probable velocity of random motion, S = w / ~  is the veloci ty ratio, and 
S 

~p (s) = ~ !" e-X'dx is the probabili ty integral .  (Here and henceforth we will omit the subscr ipt  on the t em-  
u 

4.. 

pera tu re  and functions of it.) When there  is no directional  flow (w =S =05 Eqs.  (2.8} and (2.9) become 

<v~) = V8kT/~m; (El)  = (3/2)kT 

and represen t  the average  velocity and the average  energy of random motion of the molecules .  In the other 
limiting case  when S--~o (T--- 0), we obtain f rom Eqs.  (2.8) and (2.9) 

@1> = w; <E~) : (l/2)kT, 

i.e., the hydrodynamic flow speed and the energy of thermal  motion. 

Table 1 shows values of <vl> and <El> for  severa l  values of the velocity rat io.  As follows f rom thetable,  
as S increases  the pa rame te r s  <vl> and <El> approach thei r  l imiting values ext remely  slowly, and only for  
S > 10 is the e r r o r  of the approximation <vt> =w and <El> =l/2kT less  than 1%. 
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Replacing the function F(V) by fl[(v) in Eqs.  (2.6) and (2.7), we have 

o o  

vl II (v) dv 
<v:> = n~{/Ii (v)} = 0 

f / U (v) dv 
0 

~ ( v - -  w ) 2 I [  I (v) dv 
m m 0 

<E~> = - - ~ - ~ { / l l  (v)} - : 

0 

Integrating the new expressions, we obtain 

(2.10) 

(2.11) 

<E)  = ~ ~ -  v~ {/ii (v)} = 2 

<v~) = w {t + ( u ) - ~ / 2 S - ' e - s "  [i + O (S) l - ' } ;  

mY~ {t -- 2 ( n ) - ~ / 2 S e - S *  [t + O (S)]-I}. <E,> = - T  

Table 1 also shows the quantities (v2> and <E2) as a function of S. It should be noted that for S ~ 2 the quan- 
tities <v2) and <E2) can be approximated with small error by their limiting values w and I/2kT , respectively. 
Hence, in experiments in measuring the distribution function using the time-of-flight method for S > 2 for cal- 
culations of the gasdynamic parameters of the distribution of w and Eli it is convenient to use Eqs. (2.10) and 
(2.11). Substituting f]I (v) from Eq. (2.5) into Eqs. (2.10) and (2.11), we obtain expressions for calculating the 
average parameters of a distribution function of arbitrary form from the results of time-of-flight experiments: 

co 

f L/( t )  dt 
<v>= n~(lu (v)} 0 

oo 

t /(t)  dt 
o 

--<v> tf (t) dt 
ra O "  " 

c~ 

.f tf (t) dt 
0 

where L is the distance f rom the chopper to the detector .  

3 .  R e c o n s t r u c t i o n  o f  t h e  D i s t r i b u t i o n  F u n c t i o n  

To solve the integral  equation (1.1) we will use the procedure  employed in [12, 13], which differs f rom 
other computational procedures  employed to solve i l l -posed problems.  

Firs t ,  the use of a d iscre te  Four i e r  t r ans fo rm in this procedure  enables one to construct  a unique com-  
putational basis for  obtaining a s ta t is t ical ly  regular ized solution, enables one to choose the regular izat ion 
pa ramete r ,  and also enables one to est imate the e r r o r  charac te r i s t i c s  of the solution. This enables one to r e -  
duce the number of computational operations requi red  to construct  the regular ized  solution by 2-3 o rde r s .  

Second, considerat ion of the stochastic nature of the resul ts  of the measurements  enables one to use 
mathemat ical  s ta t is t ics  to choose the regular izat ion pa rame te r  and to introduce stat is t ical  models of the solu- 
tion e r r o r s .  Thus, to obtain the regular izat ion pa rame te r  which largely  determines  the success  of regu la r -  
ization methods,  we used a s tat is t ical  c r i te r ion  of optimality [13], on the basis of which we constructed an 
algori thm which calculates the optimum value (in the sense of the minimum mean-square  reconst ruct ion er ror )  
of the regular izat ion pa ramete r .  

The regular ized  solution f~, which is a P-dimensional  vector ,  enables us to wri te  

fa = ]+ + ~,  (3.1) 

where f+ is the solution vec tor  of Eq. (1.1) when there  is no measurement  noise. The random vector  ~(~ is in ter -  
preted as the solution noise, the vec tor  of the mathemat ica l  expectation m~ and the cor re la t ion  matr ix  R ~  of 
which are  calculated f rom the relat ions given in [13]. A knowledge of these stat is t ical  cha rac te r i s t i c s  of the 
element ~ enables one not only to est imate  the mean-square  e r r o r  of the solution and to construct  confidence 
regions for  the v, ec tor  f+, but also enables one to calculate the e r r o r s  of the integral  charac te r i s t i c s  de ter -  
mined f rom the vec tor  fa" 
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In fact ,  e s t ima te s  of the m o m e n t s  

P 

~ = ~ /~ (]) (/At)~c% (3.2} 
i = t  

where  A t is the d i s c r e t e n e s s  in te rva l  and wj a r e  the coeff icients  of the quadra tu re  formula ,  a r e  random quan-  
t i t i es  and may  dif fer  cons iderab ly  f r o m  the e s t i m a t e s  gk, calculated f r o m  the vec to r  f+: 

P 

~=1 

Taking Eq. (3.1) into account,  the ma thema t i ca l  expectat ion and the va r i ance  of the moments  p ~, p ~, 
p *  2 a r e  given by the re la t ions  

1o 

j = l  
1 ~ p 

i=~ ~=~ 

(3.3) 

When the durat ion Tf  = PA t the dis t r ibut ion function f(t) is cons iderably  l e s s  (by 1.5-2 o rde r s  of magnitude) 
than the co r re l a t ion  in te rva l  of the noise of the solution 

P 

Rt~ (1, ]) co s 
j = t  

and we use the  following s i m p l e r  express ion  to ca lcula te  D[~I~ 1: 

T T 2h~-i 

- -  2-F-~" k = 0 ,  i ,2 .  

The values  of D[p~] obtained were  used to de t e rmine  the va r i ance  of the p a r a m e t e r s  <v> and (E> ca l -  
culated in t e r m s  of the moments  /~ ~, p 1", /~ 2* : 

D [<~>J--~ ~ [";] (<v>/2 * D [ . ; ]  ~ (<E>)~ 
(,o) 2 -~ ~ D ['0]; D [<E>] ~ (,0) 2 __ ~ D [bt0]. 

To explain the degree  of sp read  of the e s t ima te s  of (v>, <E> due to e r r o r s  in solving Eq. (1.1) we con-  
s t ruc ted  the confidence in terva ls  

~=[<v>  - ~, <v> + ~ol; 
~ = [<z> - ~E, <E> + ~E 1, 

where  

~ =  k(D[<v>])t/2; ~E = k(D[<E>t) v', k = 2--3. 

In p roces s ing  the r e su l t s  of t ime-o f - f l i gh t  m e a s u r e m e n t s  with recons t ruc t ion  of the dis tr ibut ion function 
we can dist inguish the following s tages :  

A. The construct ion of a r egu la r i zed  solution f c~, calculat ion of the s ta t i s t ica l  c h a r a c t e r i s t i c s  of the 
vec to r  ~5, and es t imat ion  of the uniform and Euclidean no rms  

hi = maxl/~(])--f+(])[,  1= t, P, 
J 

A~ = (/~ (i) - I+ (]))~ 
\ j = l  . . . .  

of the e r r o r s  of the solution, r e spec t ive ly .  

B. Finding the moment s  p ~, ~ ~,  p 2. with r e spec t  to the vec tor  f~  (3.2) and calculat ing the i r  s ta t i s t ica l  
c h a r a c t e r i s t i c s  M * [Pk 1, D[Pt~]. 

C. Dete rmina t ion  of the p a r a m e t e r s  (v> , (E> and the construct ion of the confidence in terva ls  ~ ,  ~e. 
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D .  

E. 

Calculation of the "standard" Maxwell function fs of the distr ibution with p a r a m e t e r s  (v) and (E). 

Determinat ion of the quantit ies 

AIs = max I fs (]) -- 1~(])l; 
i 

which cha rac t e r i ze  the norms  of the dif ference between f~ and fs" 

The las t  two stages a re  used when tes t ing the hypothesis  with regard  to the recons t ruc ted  distr ibution 
function. Thus,  if Als -<A 1 and A2s --<A2, the di f ference between fa  and fs can be explained by the e r r o r s  in solv-  
ing the integral  equation (1.1), and the hypothesis  which s ta tes  that the recons t ruc ted  function f~ belongs to the 
c lass  of Maxwell distr ibutions can be  used. 

4 .  T h e  M e t h o d  o f  M o m e n t s  

In those cases  when it is known that the veloci ty  distr ibution of the molecules  is Maxwellian one can use, 
to es t imate  the gasdynamic pa r ame te r s ,  the s imple r  method of moments  [6], which connects by algebraic  r e -  
lations the moments  of the distr ibution function in t ime space f(t) with the moments  of the measured  signal U(t) 
and the apparatus function A(t). Using this method we developed algor i thms for  recons t ruc t ing  the p a r ame te r s  
of the distr ibution function (the average  speed of direct ional  motion (v) and the t h e rm a l  energy (E))  taking 
into account the chopper function and the dynamic function of the de tec tor  and its e lec t ronic  c i rcui t .  Unlike 
[16], these  algori thms include a determinat ion of the s ta t is t ical  cha rac te r i s t i c s  of the recons t ruc ted  pa ram-  
e t e r s .  

Using the re la t ion between S and 7 and the moments  of the function f(t) [6], it can be shown that 

D(S) (O~q~--Z[D(_vr {/(t))) 4v~ {/(t)} DOh{f(t)})]; 
= \ a s !  I_(~{/(t)})' + ' (~{f( t )}:  

L e [ D(S) D (~h {/(t)]) ] 
D('e)-- (~h {/(t)})~(S-Fr) ~ (S+r) ~ ~- (~h [](t)~) ~- j' 

(4.1) 

where  r =(~r I/2eS~(1 +~(S)))-1; ~ is the t ime-of- f l ight  [6]; ~h {/(t)} = t] (t) dt f (t) dt is the f i r s t  normal ized mo-  
o 

merit; %{/(0}= ~ ( t - -  nt{/(t)})~/(t)d /(t)dt is the second normal ized cent ra l  moment; and D(r~ ~{ f(t)}) ~ and 
0 

D(v ~{ f(t)} ) a re  the var iances  of the moments  of the function fit) defined by the express ions  

D(~h{/(t)})~D(~l {U (t)}) (~i {U (t)}) ~ ~, {U (t)} c .v/ '  
(p~o{UCt)}) 2 + (p~o {U (t)})' D(P'~ (~o'{'(](t)})3 ,, u * l ,  Fo); 

D (v~ {.f (t) }) "~' O (P-2 { U(t)}) 4- 4 (1~: { d (t) })~ D (~  {U (t) }) 4- (2 (~ { u (t) })~ 
-- (~o {u (t)})~ (~o {g (t)}) 4 (~.o {u (t)}V 

(~o{-C('~) r ) D(~~ (~o2~' {U (t)}(U (t)}) 2 ~ [' 2(~o (~' {u{U (t)})a(t)}): (4.2) 

)cov( 1. o) cov( 1, 2)+(2 v .  

where  D(g i) is found f rom Eq. (3.3), when R ~ ( t i ,  tj) is the cor re la t ion  ma t r ix  of a noise ~(t), and cov(]~i, gj) is 
the cor re la t ion  between the moments  p i and # j .  
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The var iances  of the pa ramete r s  (v> and (E> are  found f rom Eqs. (4.1) and (4.2): 

D(<v>) ~ ?2D(S) -~ S2D(7); 
D(<E)) ~ (mT*/2)2D(?). 

The algor i thms were  real ized in the form of subprograms  in FORTRAN-IV. 

It should be noted that the method of moments  enables one to determine the hydrodynamic velocity and 
density of the molecular  beam without assuming a Maxwell distribution. 

In this paper  we have descr ibed two different approaches to determining pa rame te r s  f rom t ime-of-f l ight  
measurements .  To compare  these approaches both from the point of view of the accuracy  of calculating the 
pa ramete r s  and f rom the point of view of the computer  t ime involved in process ing  the experimental  results ,  
we solved the following model problem. We took as the input signal f(t) a Maxwell distribution function with 
pa ramete r s  S =5 and Y =0.15.  l0 s c m / s e c .  The t ransmiss ion  function A(t) was chosen in the form of a t rape-  
zium with a length of the lower base NH. A random process  Z(t) simulating the noise of the measur ing  sys tem 
with correla t ion ' funct ion 

Rz (~) ---- a ~ exp (--[3]~ D 

with zero  mathematical  expectation, where a 2 is the var iance of the noise, was imposed on the output signal 
U(t), which is the convolution of the functions f(t) and A(t). 

To determine the level of noisiness of the output signal we introduced the pa rame te r  

= (liZII/UUII)-t00 %, 

where liz[l: (Z~) ~ and []U][ = (Ui) ~ are  the roo t -mean- squa re  norms .  
i = i  i 

P a r a m e t e r s  S and 3' were recons t ruc ted  for  values of ~ =-2.8, 10, and 18% for  a t r ansmiss ion  function 
A(t) with NH = I0.14 for  a constant duration NX = 70 input signals.  Correspondingly,  the conditionality numbers 
P are  defined by the relat ion 

P =  ]IH' HI} []( H' H ) -  ~[I, 

where H is a square  mat r ix  which approximates the integral opera tor  (1.1}; we took values of' P =360, and 
17,000. 

Figure  2a, b shows the change in the relat ive e r r o r s  of the recons t ruc ted  pa ramete r s  6 (S) and ~ (~/) as a 
function of ~ when using the method of s tat is t ical  regular izat ion (curves 1 and 3), and the method of moments 
(curves 2 and 4); the continuous lines are  the curves  for P=360  and the dashed lines are  for P=17,000; it is 
seen that the e r r o r s  in recons t ruc t ing  the pa ramete r s  by the method of moments  are  g rea te r  than the c o r r e -  
sponding e r r o r s  in calculating the same pa ramete r s  f rom the recons t ruc ted  distribution function. These dif- 
fe rences  can be explained by the f i l tering proper t ies  of the regular iz ing algori thm. The computer  time T c r e -  
quired to calculate the desi red quantities on the "Ural-14D" computer  using the reconstruct ion of the distr ibu- 
tion function was approximately 3 rain, and for  the method of moments  it was approximately 45 sec.  
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5.  E x a m p l e  o f  P r o c e s s i n g  of  t h e  E x p e r i m e n t a l  R e s u l t s  

Figure  3 shows an example of the recons t ruc t ion  of the function f(t} f rom the exper imental  data. The 
argument is the t ime of flight of the molecules  ac ross  the distance f rom the chopper to the de tec tor  t (se~}. 
Curve 1 is the output signal of the measur ing  sys tem U(t), and curve 2 is the regula r ized  solution f~(t) of the 
integral  equation (1.1); both curves  a re  normal ized  with r e sp ec t  to the i r  maximum values.  It is seen f rom 
Fig.  3 that f~(t) is shifted toward lower values of t with a reduction in its half-width.  The regular ized  func- 
tion f~(v) replot ted on a veloci ty scale  (the dashed line) is shown in Fig. 4. Here  we have drawn the "standard" 
function fs(V) (the continuous curve} and we have also drawn the 95% confidence intervals  for  f+(v). The norms 
of the e r r o r s  are  as follows: A l =0.095, A 2 =0.047, AIs =0.068, and A2s =0.021. 

It follows f rom the inequalit ies AIS < A1, A2S < 42 that the dif ference between f~(v) and fs(V) may be due 
to e r r o r s  in solving the integral  equation (1.1) and the fact that the function fa(v) is r ep resen ted  as being Max- 
wellian in the exper iment .  When process ing  the signal shown in Fig. 3 (curve 1) by the method of s ta t is t ical  
regular iza t ion  we obtained the es t imates  S* =3.8 with confidence intervals  f rom 3.4 to 4.2, and 7 * = 0.19 �9 105 
c m / s e c  with confidence intervals  f rom 0.16" 105 to 0.22 "105 c m / s e c .  The method of moments  gave resu l t s  for  
S* =4.2 and ~/* = 0.17" 105 e m / s e c  with confidence intervals  of 3.4-5.0 and 0.14 �9 105-0.20 �9 105 c m / s e c ,  r e s pec -  
t ively.  
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