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INTRODUCTION

Several methods are at present available for measuring the velocity distribution function of molecules
in gas flows. These are the mechanical selection method [1], measurements using the Doppler contour of spec-
tral lines excited by a beam of electrons [2], and measurements based on the time taken for the molecules to
travel an assigned distance [3]. When using any of these methods the problem arises of interpreting the ex~
perimental data, which involves finding a relationship between the results of the measurements and the in-
vestigated velocity distribution of the molecules and is common for all the methods used, since in all versions
the recorded signal is an integral of the convolution of the distribution investigated with a certain apparatus
function, In this paper, using the example of time-of-flight measurements in a molecular beam, we consider
two methods of determining gasdynamic parameters related to the moments of the distribution function: the
method in which the distribution function is first established using statistical regularization and subsequent
calculation of the moments and the method of direct reconstruction of the moments. In the first case the re-
lation between the gasdynamic parameters and the moments of the distribution function are obtained for a dis-
tribution of arbitrary form, and in the second it is obtained solely for a Maxwell distribution.

1. Method of Measurement

A block diagram of the system used for time-of-flight measurements is shown in Fig. 1. A narrow packet
of molecules is separated from a molecular beam formed by the skimmer 1, using a chopper 2. During the
time of flight across the base L this packet becomes blurred in accordance with the velocity distribution func-
tion of the molecules. The signal U(t) recorded by the flight-type ionization detector 3 represents the change
with time of the density of molecules in the pickup. To increase the signal/noise ratio the time-of-flight curves
are stored and averaged in the electronic unit 4, The signal U(t) is the convolution of the distribution function
of the molecules 1(t) in time space with an apparatus function [4]

U)=| f() A@— ) dv +E(2), (1.1)
where £ (t) is the measurement noise which is not eliminated completely by the storage process, and A(t) is
the apparatus function of the system which takes into account the chopper function, the dynamic properties of
the detector, and the apparatus function of the storage device. The transmission function of the chopper {4]
depends on the relation between the effective radius of the molecular beam, the width of the chopper slit, and
its speed of rotation.

Methods of processing the results of time-of-flight experiments in order to determine the gasdynamic
parameters of the distribution function have been described in a number of papers: in [3], and later in [5], meth~
ods are described based on the assumption that the time-of-flight curves are distorted to only a negligible ex-
tent by the apparatus function of the chopper and that there is no measurement noise present; in [6] algebraic
expressions are obtained between the moments of the recorded time-of-flight signal, the velocity distribution
function of the molecules, and the apparatus function. Using a Maxwell distribution function the gasdynamic
parameters of the distribution were determined. However, the statistical characteristics of the reconstructed

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 32-41,
September-October, 1976. Original article submitted August 14, 1975.

This r_mzten'a! is_pratected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011, No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

625



TABLE 1

s Wy l By I (vg> 7 B3
8FT 3 SET 1
0 8kT SkT 2kT kT
_ nm am
1 1
0.5 2,76-w 2,12--51\-1‘ 1,45.w 0,71-—2-kT
1 1
1 1,63.w 1,62-—2kT 1,11-w 0,77--2kT
Lp 1
1,22.w 1,22-—2]( 1,003.w 0,98-—2kT
1 1
3 L11-w 1,11.-§kT 1,00001 - w 0,9998--§kT
_ 1 1 1
5 1,040 1,04--§kT w-0{w) -ékT +0 (—sz)
1 1 1
10 1,01.w 1,01 -—sz w0(w) _ZkT “+0 —sz>
© w %kT w ' -;-kT

parameters were not considered. In [7], using the same assumptions as in [6], the effect of the transmission
function of the chopper and the dynamic function of the detector and its electronic circuit on the time-of-flight
signal was estimated, and it was shown that in practical experiments, neglect of apparatus broadening leads to
errors when processing and analyzing the experimental results. In none of these papers were the apparatus
functions of all the sections taken into account simultaneously nor was the signal reconstructed taking £ (t) into
account. One of the main drawbacks of the above methods is also the need to assume a Maxwell distribution.

In [8], using the Tikhonov method of regularization, the problem of reconstructing the distribution func-
tion from measurements using a mechanical selector was solved, The stochastic nature of the physical mea-
surements was not taken into account, and estimates were not made of the errors involved in reconstructing
the distribution function,

2. The Relation between the Measured Signal

and the Gasdynamic Parameters

The required function f(t) is proportional to the change in molecular density n(t) as a function of the time
of flight t:
(@) = en(?), (2.1)

where c is the apparatus constant. The density n(t) is related to the velocity distribution function F(v) by the
expression [5]

' n{t) = N F(v)/t, (2.2)
where N is the number of particles in a single packet defined by the chopper. Hence, the dependence of f(t)t on

1/t normalized to unity at the maximum is identical with the dependence of F(v) on v with a similar normaliza-
tion.

We will write the velocity distribution function in arbitrary form taking into account the anisotropy in
directions parallel and perpendicular to the motion of the gas:

626



F(v, 8) = cieof g (v, O) (v, OW?, (2.3)

where © is the angle between the current lines and the direction to the detector, and c; and ¢, are normaliza-
tion constants. For a Maxwell distribution with directional anisotropy Eq. (2.3) becomes

Flv, ©) = m/2nkT | -(m/2nkT )/ expl— m{v sin ©)%/2kT | | expl—m{v cos 8 — w)*/2kTy I?,

which is identical with the expression for F(v, ©) given in [9]. Here k is Boltzmann's constant, m is the mass
of the molecule, w is the hydrodynamic velocity, and T I and T, are the parallel and perpendicular tempera-
tures [10].

In the case when the detector is placed on the axis of the molecular beam and the solid angle within which
the detector is seen from the skimmer is small, Eq. (2.3) can be represented in the simpler form

F@) = cv’fy (v), . (2.4)
where c¢; is a normalization constant, and f "(v) in the case of a Maxwell distribution has the form
f1 (@) — epxl—m(v — w)*/2kTy .
Substituting Egs. (2.2) and (2.4) into Eq. (2.1), we obtain the relation between £(t) and F(v):
(%) = e F(v) = ey (), (2.5)
where ¢, is a constant.

The information on the distribution function obtained from time-of-flight measurements can be conven-
iently represented in the form of averaged parameters: the hydrodynamic flow velocity w and the average
thermal energy for a direction parallel to the flow E I (equal to 1/sz under equilibrium conditions). By defini
tion[117,the average velocity and the average thermal energy of the gas have the forms

(F () uf vF (v) dv
/ _ vy __ _ 0 .
o =wFme) = @) = m—. (2.6)

v} av

¢
J o—wpF (gydv

sps _m W {FW) mfm {(Fe)pi_ m =3
By = 2 T {F () —E[M; EF(U)ij = T"z{F (W)= = ) (2.7)

[ Fya
0

where fig, K1, ko are the zero, first, and second unnormalized, and ny; and v, are the first and-second normal-
ized, central moments of the arbitrary distribution F(v). For a Maxwell distribution function, as a result of
integrating Eqgs. (2.6) and (2,7) we obtain

(vyd = 2 L @(8) 1_1}. )
o w{1 + 2[25 ey I (2.8)
<E1 - mzz 1 Jr“ 1 !

S+ + @ PseTS Lo (17 | (2.9)

where v =V2kT/m is the most probable velocity of random motion, S=w/y is the velocity ratio, and
5

D (S) = S e dz is the probability integral. (Here and henceforth we will omit the subscript on the tem-

2
V) )
perature and functions of it.) When there is no directional flow (w=8=0) Eqgs. (2.8) and (2.9) become
vy = V8kT/nm; <E> = (3/2) kT

and represent the average velocity and the average energy of random motion of the molecules. In the other
limiting case when S—« (T — 0), we obtain from Eqgs, (2.8) and (2.9)

<171> = w; <E1> = (1/2)kT,
i.e., the hydrodynamic flow speed and the energy of thermal motion.

Table 1 shows values of {(v;) and (E;) for several values of the velocity ratio. As follows from thetable,
as S increases the parameters (vy) and (E,;) approach their limiting values extremely slowly, and only for
S> 10 is the error of the approximation (v,) =w and {(E;) =1/2kT less than 19%.
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Replacing the function F(V) by f "(V) in Eqgs. (2.6) and (2.7), we have

[ ofy @) av

@ = mlfy (v)) = b—ry (2.10)
{1, @ av
0

[o— w2 @)av

By = g wify @)} = 5> (2.11)

oo

[1)@a
0
Integrating the new expressions, we obtain

vy =w{t+ @725 L+ @S
By ="t — 2(m) 255 (4 4 @ () ).

Table 1 also shows the quantities (v;) and (E,) as a function of S. It should be noted that for S 2 the quan-
tities (vy) -and (E,) can be approximated with small error by their limiting values w and 1/sz, respectively.
Hence, in experiments in measuring the distribution function using the time-of-flight method for S> 2 for cal-
culations of the gasdynamic parameters of the distribution of w and E|f it is convenient to use Eqs. (2.10) and
(2.11). Substituting f I (v) from Eq. (2.5) into Egs, (2.10) and (2.11), we obtain expressions for calculating the
average parameters of a distribution function of arbitrary form from the results of time-of-flight experiments:

Lf(t) dt

o—3g

> =mffy ()} =

?

g

£ (2) dt

—

f,f

L 2
- <v>) i () dt

By=5v{f1 ()} =5

?

th () dt
b
where L is the distance from the chopper to the detector.

3. Reconstruction of the Distribution Function

To solve the integral equation (1.1) we will use the procedure employed in [12, 13], which differs from
other computational procedures employed to solve ill-posed problems.

First, the use of a discrete Fourier transform in this procedure enables one to construct a unique com-
putational basis for obtaining a statistically regularized solution, enables one to choose the regularization
parameter, and also enables one to estimate the error characteristics of the solution. This enables one to re-
duce the number of computational operations required to construct the regularized solution by 2-3 orders.

Second, consideration of the stochastic nature of the results of the measurements enables one to use
mathematical statistics to choose the regularization parameter and to introduce statistical models of the solu-
tion errors. Thus, to obtain the regularization parameter which largely determines the success of regular-
ization methods, we used a statistical criterion of optimality [13], on the basis of which we constructed an
algorithm which calculates the optimum value (in the sense of the minimum mean-square reconstruction error)
of the regularization parameter,

The regularized solution f,,, which is a P-dimensional vector, enables us to write

fa = f+ + E{M . (3-1)

where £, is the solution vector of Eq. (1.1) when there is no measurement noise. The random vector & isinter-
preted as the solution noise, the vector of the mathematical expectation mg and the\correlation matrix Rgi of
whichare calculated from the relations given in [13]. A knowledge of these statistical characteristics of the
element £, enables one not only to estimate the mean-square error of the solution and to construct confidence
regions for the vector f,, but also enables one to calculate the errors of the integral characteristics deter-
mined from the vector f.
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In fact, estimates of the moments

(3.2)

i
i

fo (7) (1A ) 03,

1

e

i

where At is the discreteness interval and w; are the coefficients of the quadrature formula, are random quan-
tities and may differ considerably from the estimates py, calculated from the vector f_:

P
Ry = ;231 f+ () (18,) ;.

Taking Eq. (3.1) into account, the mathematical expectation and the variance of the moments p §, puf,
p 5 are given by the relations

M (pi] = s + App, k=0,1,2;
P
Apy = ,-% me (7) (JA ) wy; (3.3)

P P
Dwil = Z 2 Reet N0 (180 0105

When the duration T¢=PA; the distribution function (t) is considerably less (by 1.5-2 orders of magnitude)
than the correlation interval of the noise of the solution

&
. 2 B D)oy
£ Ry (L 1) ’
and we use the following simpler expression to calculate D[u ¥ I:
2541

« T T
D [ur] ~ 235_7;1, kE=0,1,2.

The values of D[u *] obtained were used to determine the variance of the parameters (v) and (E) cal-
culated in terms of the moments p, p, pu:

Dlm] | (o D W] | (B pp
D[<U ]2 * + * D p’* ’ D[(E}]Q * + *\J D[PO]
? (Po)z (F‘o)z [ 0] (Po)z (“0)?
To explain the degree of spread of the estimates of (v), (E} due to errors in solving Eq. (1.1) we con-
structed the confidence intervals

Ev=[<v> — &, <U> + gp]i
B =KE) — &g, {E> + &g,

where
b= kDKvOIW2; Eg = KDKEYI)A, k = 2—3.

In processing the results of time-of-flight measurements with reconstruction of the distribution function
we can distinguish the following stages:

A, The construction of a regularized solution f ,, calculation of the statistical characteristics of the
vector £,, and estimation of the uniform and Euclidean norms

Alz %axlfa(])—f-i-(])la ]: 17 P,

P s
A, = (él (fa (i) — 1 (f»z)

of the errors of the solution, respectively.

B. Finding the moments u §, p{, uS with respect to the vector f, (3.2) and calculating their statistical
characteristics M[u’l'; 1, D[pﬁ 1.

C. Determination of the parameters (v), (E) and the construction of the confidence intervals E,, Ex.
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D. Calculation of the "standard" Maxwell function f; of the distribution with parameters (v) and (E).

E. Determination of the quantities

Big = max|f3() — )

P N\ 172
Ags = (Ei (fo () ~Ta (1'»2) ,
which characterize the norms of the difference between fy and fg.

The last two stages are used when testing the hypothesis with regard to the reconstructed distribution
function. Thus, if Ajg=A; and A,5 =A,, the difference between fy and f5 can be explained by the errors in solv-

ing the integral equation (1.1), and the hypothesis which states that the reconstructed function f, belongs to the
class of Maxwell distributions can be used.

4, The Method of Moments

In those cases when it is known that the velocity distribution of the molecules is Maxwellian one can use,
to estimate the gasdynamic parameters, the simpler method of moments [6], which connects by algebraic re-
lations the moments of the distribution function in time space f(t) with the moments of the measured signal U(t)
and the apparatus function A(t). Using this method we developed algorithms for reconstructing the parameters
of the distribution function {the average speed of directional motion (v) and the thermal energy (E)) taking
into account the chopper function and the dynamic function of the detector and its electronic circuit. Unlike

[16], these algorithms include a determination of the statistical characteristics of the reconstructed param-
eters,

Using the relation between S and ¥ and the moments of the function f(t) [6], it can be shown that

(322D (v F (), 4w (f ()
D(S) _(08) [(nf{f(t) B +(m{ e D mdf @) })]

o) L2 D(s) | Dm{f®) ]
D = {f(t)})2(5+r)z[ e IO

(4.1)

. 2 - tn A
where r=(7 /265 (1 +8(8)) ™Y @ is the time-of-flight {6]; m {f ()} = j H(2) dt/g F(t) dt is the first normalized mo-
0 0

ment; v,{f(t)}= S(t —m{f (£)})? f(t)dt/ j. f(t)dt is the second normalized central moment; and D(n ,{ f(t)h® and

D(v 2{ f(t)} ) are the variances of the moments of the function f(t) defined by the expressions

. o~ D U (1)) (wa {U
Din{f (0 o~ S AZ) 1 3 (O b g7 oy — T cov (o

D (py (U v v e
Dy (@~ gt 4 4 Sl D, U (t)})+( e —

- . (4.2)
_ m{U@)} )2D(}10{U(t)}) +2 [__ 2p {U (1)) ( 2w (U (1)})

(ho {U (0})* o (UDH\ (U@}

ps (U (1)) i {U () ' ((m{U(tW _ g{mm) 1 \ ]
‘(“uf{v(tn)z')“"v(”h Mo = 2 gy <oV (e ) H 2T TONT ReTomy 00 (Bos Ha) |

where D(3) is found from Eq. (3.3), when Rg (ti, tj) is the correlation matrix of a noise £(t), and cov{ui, uj) is
the correlation between the moments p and i i
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The variances of the parameters (v) and (E) are found from Egs. (4.1) and (4.2):

D(v)) == y*D(8) + $2D(y);
D(E>) == (my¥22D(y).

The algorithmswere realized in the form of subprograms in FORTRAN-IV,

It should be noted that the method of moments enables one to determine the hydrodynamic velocity and
density of the molecular beam without assuming a Maxwell distribution.

In this paper we have described two different approaches to determining parameters from time-of-flight
measurements. To compare these approaches both from the point of view of the accuracy of calculating the
parameters and from the point of view of the computer time involved in processing the experimental results,
we solved the following model problem, We took as the input signal f(t) a Maxwell distribution function with
parameters S=5 and Y =0.,15- -10® cm/sec. The transmission function A(t) was chosen in the form of a trape-~
zium with a length of the lower base NH. A random process Z(t) simulating the noise of the measuring system
with correlation function

Rz (1) = o® exp (—Bl1))

with zero mathematical expectation, where ¢? is the variance of the noise, was imposed on the cutput signal
U(t), which is the convolution of the functions f(t) and A(t),

To determine the level of noisiness of the output signal we introduced the parameter

¢ = (ZIU))-100%,

n n
where |Z]|= 1/2 (Z:)? and U] = 1/21 (U:)? are the root~-mean-square norms.
i=1 j==

Parameters S and Y were reconstructed for values of £ =2.8, 10, and 18% for a transmission function
A(t) with NH=10.14 for a constant duration NX =70 input signals. Correspondingly, the conditionality numbers
P are defined by the relation

= |H'H|[(H'H)~,

where H is a square matrix which approximates the integral operator (1.1); we took values of P =360, and
17,000.

Figure 2a, b shows the change in the relative errors of the reconstructed parameters 6(S) and 6 (v) as a
function of { when using the method of stafistical regularization (curves 1 and 3), and the method of moments
(curves 2 and 4); the continuous lines are the curves for P =360 and the dashed lines are for P=17,000; it is
seen that the errors in reconstructing the parameters by the method of moments are greater than the corre-
sponding errors in calculating the same parameters from the reconstructed distribution function. These dif~
ferences can be explained by the filtering properties of the regularizing algorithm, The computer time T, re-
quired to calculate the desired quantities on the "Ural-14D" computer using the reconstruction of the dlstrxbu—
tion function was approximately 3 min, and for the method of moments it was approximately 45 sec,
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5. Example of Processing of the Experimental Results

Figure 3 shows an example of the reconstruction of the function f(f) from the experimental data. The
argument is the time of flight of the molecules across the distance from the chopper to the detector t (set).
Curve 1 is the output signal of the measuring system U(t), and curve 2 is the regularized solution fa(t) of the
integral equation (1.1); both curves are normalized with respect to their maximum values, It is seen from
Fig. 3 that f,(t) is shifted toward lower values of t with a reduction in its half-width. . The regularized func-
tion fy(v) replotted on a velocity scale (the dashed line) is shown in Fig, 4. Here we have drawn the "standard"
function fg(v) (the continuous curve) and we have also drawn the 95% confidence intervals for fi(v). The norms
of the errors are as follows: A;=0,095, A, =0.047, &;5=0.068, and A,g =0.021.

It follows from the inequalities Ajg < Ay, Ayg < A, that the difference between f, (v) and f (v) may be due
to errors in solving the integral equation (1.1) and the fact that the function fo/(v) is represented as being Max-
wellian in the experiment, When processing the signal shown in Fig. 3 (curve 1) by the method of statistical
regularization we obtained the estimates S*=3.8 with confidence intervals from 3.4 to 4.2, and ¥*=0.19 -10°
em/sec with confidence intervals from 0.16+10° to 0.22 *10° em/sec. The method of moments gave results for
S*=4.2 and ¥*=0.17 *10° cm/sec with confidence intervals of 3.4-5.0 and 0.14 - 10°-0.20 - 10° cm/ sec, respec-
tively.
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